Linear Algebra II

16/03/2009, Monday, 09:00-11:00

Gram-Schmidt process

-

Consider the vector space of P_3 with the inner product

$$\langle p, q \rangle = p(-2)q(-2) + p(0)q(0) + p(2)q(2).$$

- (a) Is the basis $\{1, x, x^2\}$ an orthonormal basis?
- (b) Apply Gram-Schmidt process to obtain an orthonormal basis.
- (c) Find the coordinates of the polynomial $1 + x + x^2$ in the orthonormal basis obtained above.

2

Orthogonality

Consider the vector space of $\mathbb{R}^{2\times 2}$ with the inner product

$$\langle A, B \rangle = \operatorname{trace}(A^T B)$$

where trace(M) denotes the sum of the diagonal elements of the matrix M. Let $S \subset \mathbb{R}^{2\times 2}$ be the subspace of symmetric matrices.

- (a) Find a basis for S.
- (b) Is this an orthonormal basis? If not, find an orthonormal basis for S.
- (c) Find the closest symmetric matrix to the matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

3

Diagonalization

Solve the initial value problem

$$x' = x - z$$
$$y' = y + 2z$$
$$z' = x + y + z$$

with
$$x(0) = 1$$
, $y(0) = 1$, and $z(0) = 4$.

Singular value decomposition

4

Two matrices $A, B \in \mathbb{R}^{m \times m}$ are called *unitarily equivalent* if there exists an orthogonal matrix $W \in \mathbb{R}^{m \times m}$ such that $A = WBW^T$. Prove of disprove the statement:

Two matrices are unitarily equivalent if and only if they have the same singular values.